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It is often said that biological systems, such as cells,
are ‘complex systems’. A popular notion of complex
systems is of very large numbers of simple and
identical elements interacting to produce ‘complex’
behaviours. The reality of biological systems is

somewhat different. Here large numbers of functionally
diverse, and frequently multifunctional, sets of elements
interact selectively and nonlinearly to produce coherent
rather than complex behaviours.

Unlike complex systems of simple elements, in which
functions emerge from the properties of the networks they
form rather than from any specific element, functions in
biological systems rely on a combination of the network 
and the specific elements involved. For example, p53 (a 
393-amino-acid protein sometimes called ‘the guardian of
genome’) acts as tumour suppressor because of its position
within a network of transcription factors. However, p53 is
activated, inhibited and degraded by modifications such as
phosphorylation, dephosphorylation and proteolytic
degradation, while its targets are selected by the different
modification patterns that exist; these are properties that
reflect the complexity of the element itself. Neither p53 nor
the network functions as a tumour suppressor in isolation.
In this way, biological systems might be better characterized
as symbiotic systems.

Molecular biology has uncovered a multitude of biologi-
cal facts, such as genome sequences and protein properties,
but this alone is not sufficient for interpreting biological 
systems. Cells, tissues, organs, organisms and ecological
webs are systems of components whose specific interactions
have been defined by evolution; thus a system-level under-
standing should be the prime goal of biology. Although
advances in accurate, quantitative experimental approaches
will doubtless continue, insights into the functioning of bio-
logical systems will not result from purely intuitive assaults.
This is because of the intrinsic complexity of biological sys-
tems. A combination of experimental and computational
approaches is expected to resolve this problem.

A two-pronged attack
Computational biology has two distinct branches: knowl-
edge discovery, or data-mining, which extracts the hidden
patterns from huge quantities of experimental data, form-
ing hypotheses as a result; and simulation-based analysis,
which tests hypotheses with in silico experiments, providing
predictions to be tested by in vitro and in vivo studies.

Knowledge discovery is used extensively within bio-
informatics for such tasks as the prediction of exon–intron
and protein structure from sequence1, and the inference of
gene regulatory networks from expression profile2–4. These
methods typically use predictions based on heuristics, on
statistical discriminators that often involve sophisticated
approaches (such as hidden Markov models) and on other
linguistic-based algorithms (see review in this issue by
Searls, pages 211–217).

In contrast, simulation attempts to predict the dynamics
of systems so that the validity of the underlying assumptions
can be tested. Detailed behaviours of computer-executable
models are first compared with experimental observation.
Inconsistency at this stage means that the assumptions that
represent our knowledge on the system under consideration
are at best incomplete. Models that survive initial validation
can then be used to make predictions to be tested by experi-
ments, as well as to explore questions that are not amenable
to experimental inquiry.

Although traditional bioinformatics has been used widely
for genome analysis, simulation-based approaches have
received little mainstream attention. This is now changing.
Current experimental molecular biology is now producing the
high-throughput quantitative data needed to support simula-
tion-based research. Combined with rapid progress of
genome and proteome projects, this is convincing increasing
numbers of researchers of the importance of a system-level
approach5. At the same time, substantial advances in software
and computational power have enabled the creation and
analysis of reasonably realistic yet intricate biological models.

There are still issues to be resolved, but computational
modelling and analysis are now able to provide useful 
biological insights and predictions for well understood 
targets such as bifurcation analysis of the cell cycle6,7, 
metabolic analysis8,9 or comparative studies of robustness of
biological oscillation circuits10.

It is crucial that individual research groups are able to
exchange their models and create commonly accepted
repositories and software environments that are available to
all. Systems Biology Markup Language (SBML;
http://www.sbml.org/), CellML (http://www.cellml.org/)
and the Systems Biology Workbench are examples of efforts
that aim to form a de facto standard and open software 
platform for modelling and analysis11,12. These significantly
increase the value of the new generation of databases 
concerned with biological pathways, such as the Kyoto
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Encyclopedia of Genes and Genomes (KEGG)13, Alliance for Cellular
Signaling (AfCS)14 and Signal Transduction Knowledge Environ-
ment (STKE)15, by enabling them to develop machine-executable
models, rather than mere human-readable forms.

Such changes are fuelling a renewed interest in a system-level
approach to biology, but we should not forget that this is an area with
a long history16,17, rooted as much as anywhere in classical physiology
(see review in this issue by Buchman, pages 246–251). However, the
close linkage between system-level understanding and molecular-
level knowledge was made possible only by the recent progress in
genomics and proteomics. The approach attempts to understand
biological systems as systems, specifically targeting the identification
of their structures and dynamics, and the establishment of methods
to control cellular behaviours by external stimuli and to design 
genetic circuits with desired properties. These aims will be achieved
only by combining computation, system analysis, new technologies
for comprehensive and quantitative measurements, and high-
throughput quantitative experimental data18,19.

Multiple faces of robustness
Among various scientific questions, one issue receiving considerable
attention is how robustness is achieved and how it evolves within 
various aspects of biological systems. Robust systems maintain their
state and functions against external and internal perturbations, and
robustness is an essential feature of biological systems, having been
studied since the earliest attempts at a system-oriented view (for
example, Cannon’s homeostasis and Weiner’s cybernetics16). Biolog-
ical systems have been found to be robust at a variety of levels from
genetic switches to physiological reactions (see review in this issue by
Buchman, pages 246–251).

Robust systems are both relatively insensitive to alterations of their
internal parameters and able to adapt to changes in their environment.
In highly robust systems, even damage to their very structure produces
only minor alterations in their behaviour. Such properties are achieved
through feedback, modularity, redundancy and structural stability.

A variety of feedback and feed-forward control is observed
throughout biology. For example, integral feedback is central to bac-
teria chemotaxis20–22. And p53-based cell-cycle arrest displays what is

known in the engineering field as ‘bang-bang control’, a subtype of
feedback control. Damage to DNA is sensed by proteins such as ATM
(for ataxia telangiectasia mutated, named after a disease in which this
enzyme is mutated) and DNA-dependent protein kinase, which acti-
vate the p53 protein. Active p53 then transactivates p21, which results
in G1 arrest; this state is released when DNA damage is repaired, thus
forming a feedback loop.

Cells themselves provide the most obvious form of biological
modularity by physically partitioning off biochemical reactions.
However, biochemical networks within cells also form modular
compartments isolated by spatial localization23, anchoring of 
proteins to plasma membranes and by dynamics.

Cells also provide redundancy, with many autonomous units 
carrying out identical roles. But redundancy also appears at other 
levels by having multiple genes that encode similar proteins, or multi-
ple networks with complementary functions. For example, Per1, Per2
and Per3 genes encode proteins in the circadian oscillator, but 
knock-out of one or two of these produces no visible phenotype. The
Cln gene family form redundant pairs for the cell cycle24. The stringent
response of Escherichia coli activates alternative metabolic dynamics
depending upon the availability of lactose and glucose25.

Structurally stable network configurations increase insensitivity
to parameter changes, noise and minor mutations. For example, 
elegant experiments on the archetypal genetic switch — the lambda
phage decision circuit — have shown it to be robust against changes
in binding affinity of promoters and repressors; its stable switching
action arises from the structure of its network, rather than the specif-
ic affinities of its binding site26. Additionally, a number of networks
for biological oscillations and transcriptional regulations have been
shown to be tolerant against noise (ref. 27; and see review in this issue
by Rao and colleagues, pages 231–237). But only computer 
simulation could have shown the degree to which the gene regulatory
networks for segmentation during Drosophila embryogenesis
remain robust over a large range of kinetic parameters28,29.

The robustness of a system is not always to an organism’s 
advantage. Cancer cells are extremely robust for their own growth
and survival against various perturbations. They continue to 
proliferate, driven by the engine of the cell cycle, eliminating 
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Figure 1 Linkage of a basic systems-biology research cycle with drug discovery and treatment cycles. Systems biology is an integrated process of computational modelling,
system analysis, technology development for experiments, and quantitative experiments18. With sufficient progress in basic systems biology, this cycle can be applied to drug
discovery and the development of new treatments. In the future, in silico experiments and screening of lead candidates and multiple drug systems, as well as introduced genetic
circuits, will have a key role in the ‘upstream’ processes of the pharmaceutical industry, significantly reducing costs and increasing the success of product and service
development.
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communication with their external environment, thus making it
insensitive against external perturbations. In addition, many anti-
cancer drugs are rendered ineffective by the normal functioning of a
patient’s body, including defence systems such as the metabolism of
xenobiotics (most notably by cytochrome P450), the brain–blood
barrier, and the dynamics of gene regulatory circuits, which can
adjust the concentration of drug targets through feedback 
mechanisms and redundancy. To establish treatments that move
patients from a stable but diseased state to a healthy one will require
an in-depth, system-level understanding of biological robustness.

Although the general principles of robust systems are well estab-
lished, there remain a number of unresolved issues concerning their
evolution and execution in specific biological systems, and how they
can be manipulated or designed. Control theory has been used to
provide a theoretical underpinning of some robust systems, such as
adaptation through negative feedback21. However, this approach has
limitations. For example, current control theory assumes that target
values or statuses are provided initially for the systems designer,
whereas in biology such targets are created and revised continuously
by the system itself. Such self-determined evolution is beyond the
scope of current control theory.

No free lunch
Although robustness is critical in assuring the survival of a biological
system, it does not come without cost. Carlson and Doyle emphasize
the “robust, yet fragile” nature of complex systems exhibiting highly
optimized tolerance30,31. Systems designed or evolved to be robust
against common or known perturbations can often be fragile to new
perturbations.

Another view on the vulnerability of complex network comes
from a statistical perspective32–34. Comparative studies on robustness
of large-scale networks show that scale-free networks (also known as
‘small world’ or Erdös–Rényi networks) are more robust than 
randomly connected networks against random failure of their com-
ponents34. However, scale-free networks are more vulnerable against
malfunction of the few highly connected nodes that function as hubs.

Scale-free networks can form by growth such that new nodes are
connected preferentially to nodes that are already highly connected.
Barabasi and colleagues claim that protein–protein interaction 
networks, which constitute the protein universe (see review in this
issue by Koonin and colleagues, pages 218–223), are scale-free32,35

and that mutations in highly connected proteins are more likely to be
lethal than are mutations in less-connected nodes33. Although they
estimated connectivity from yeast two-hybrid data, which are notori-
ously noisy, this hypothesis is intuitively attractive. For example, the
p53 protein is one of the most connected hubs in the protein universe,
and its mutations cause serious damage to cellular functions, 
particularly in repair of DNA damage and tumour suppression36.

Nevertheless, some of the claims for scale-free networks are still
controversial37, and evidence for mechanisms leading to preferential
attachment in biological systems remains equivocal. Furthermore,
yeast two-hybrid assays produce many false-positive outcomes, and
the current hand-crafted pathway maps may be heavily biased
towards connection to functionally important genes simply because
these have been popular targets for research.

Even when these shortcomings are surpassed, such statistics-
based theories — despite providing insights on macroscopic proper-
ties of the network — will still have difficulty making predictions
about specific interactions. It is analogous to telling a stock-market
investor that “one in 50 companies will go bankrupt”, advice that is of
little help if you are unable to identify which one. The challenge for
statistical theories is to identify how they can be linked to specific
behaviours and so make useful predictions.

Design patterns of functional modules
Just as the principles behind robust networks can be classified into
several types, so too can the various functional circuits or modules

from which they are assembled, such as genetic switches, flip-flops,
logic gates, amplifiers and oscillators. Good examples come from the
mechanisms of biochemical oscillations (see review in this issue by
Goldbeter, pages 238–245), which have been the focus of numerous
groups38–41. These studies have facilitated their classification into 
several schemes, such as substrate-depletion oscillators, positive
feedback loops, the Goodwin oscillator and time-delayed negative
feedback oscillators41. Similar attempts have also been made for other
functional networks. Jordan and colleagues have identified various
examples of multitasking in signal transduction42; Bhalla and Iyengar
reported several circuits that may function as temporal information
stores (that is, memory devices)43; and Rao and colleagues have
uncovered several circuits that mitigate the effect of noise and exploit
it for specific functions (see review in this issue, pages 231–237).

Although these functional networks have analogues in electronic
and process engineering, they have been formed by evolution, which
makes it unlikely that any kind of ‘first principle’ underlies their
design. However, a set of principles can be envisaged and identified
through studying the structure and function of biological circuits,
and their origin at the system level44–46. What are their basic 
functional building blocks? What are their dynamical properties and
operating principles? How has each module evolved? And how can
they be adapted or designed for alternative applications?

Recently, a systematic, high-throughput computational study
was carried out by Shen-Orr and colleagues, which identified com-
mon motifs in the gene regulatory networks of E. coli using the Regu-
lonDB database47. They found that feed-forward loops, single-input
modules and dense overlapping regulons appeared frequently. While
this study only used a gene regulation database, this type of approach
can be augmented to include protein–protein and protein–DNA
interactions to systematically identify network design patterns from
large-scale data.

Such data, combined with function-driven identification of circuit
patterns, will allow the creation of a large repository of functional bio-
logical networks, so enabling the systematic analysis of design patterns
and their evolution. We already know of cases where the same circuit
patterns and homologous genes produce similar system behaviours,
but with unrelated physiological outcomes. We also know of cases
where the same circuit patterns use different sets of genes to attain
similar system behaviours, and where identical functions are achieved
with degenerate paths involving different circuit patterns and 
different genes46. More systematic surveys will be needed to determine
how many evolutionary conserved circuits exist, in what functions
and how they relate to the evolution of genes. It may be that functional
circuits should be considered the units of evolution.

Systems drug and treatment discovery
The systems biology approach, with its combination of computational,
experimental and observational enquiry, is highly relevant to drug 
discovery and the optimization of medical treatment regimes for indi-
vidual patients. Although the analysis of individual single nucleotide
polymorphisms is expected to reveal individual genetic susceptibilities
to all forms of pathological condition, it may be impossible to identify
such relationships when complex interactions are involved.

Consider a hypothetical example where variations of gene A
induce a certain disease. Susceptibility relationships may not be
apparent if circuits exist to compensate for the effects of the variability.
Polymorphisms in gene A will be linked to disease susceptibility only if
these compensatory circuits break down for some reason. A more
mechanistic, systems-based analysis will be necessary to elucidate
more complex relationships involving multiple genes that may create
new opportunities for drug discovery and treatment optimization.

Computer simulation and analysis, along with traditional bioinfor-
matics approaches, have frequently been proposed to significantly
increase the efficiency of drug discovery48–50. At present, empirical
ADME/Tox (absorption distribution metabolism excretion/toxicity)
and pharmacokinetic predictions have been used with some success.
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For example, a human intestinal absorption model based on 
correlations between the passive permeation measurement of over 
300 compounds and known structural features, such as hydrogen-bond
donors, hydrogen-bond acceptors and molecular weight, has been used
to predict the absorption of novel compounds by the human intestine51.
However, such models are not easily converted for use in other 
situations and they often require extensive data sets in order to address
specific questions. What is needed are reliable, mechanism-based
ADME/Tox and pharmacokinetic models52–56, built on molecular-level
models of cells, that are more easily transferable and accountable than
are traditional, empirical, quantitative structure–activity relations.

Scaling up
So far, most systems biology simulations have tended to target relatively
small sub-networks within cells, such as the feedback circuit for bacteria
chemotaxis20,21, the circadian rhythm57,58, parts of signal-transduction
pathways43,59, simplified models of the cell cycle7,60,61 and red blood
cells62–64. Notable larger simulations have attempted to model bacterial
metabolic networks for analysis of metabolic control62,63 and flux 
balance8,65, but these deal with steady-state rather than dynamic behav-
iour. Recently, research has begun on larger-scale simulations. At the
level of the biochemical network, simulation of the epidermal growth
factor (EGF) signal-transduction cascade has been carried out. The
simulation involves over 100 equations and kinetic parameters and will
be used to predict complex behaviours of the pathway, as well as to iden-
tify roles of external and internal EGF receptors59. The physiome project
is an ambitious attempt to create virtual organs that represent essential
features of organs in silico66,67. Simulation of the heart was one of the
early attempts in this direction, integrating multiple scales of models
from genetics to physiology68. Even whole-patient models for specific
disease, such as obesity and diabetes, are being developed for prediction
of disease development and drug discovery.

Building a full-scale patient model, or even a whole-cell or organ
model, is a challenging enterprise. Multiple aspects of biological
processes have to be integrated and the model predictions must 
be verified by biological and clinical data, which are at best sparse 
for this purpose. Integrating heterogeneous simulation models is a 
non-trivial research topic by itself, requiring integration of data of
multiple scales, resolutions and modalities.

Simulation often requires integration of multiple hierarchies of
models that are orders of magnitude different in terms of scale and 
qualitative properties (for example, gene regulations, biochemical 
networks, intercellular communications, tissue, organ and patient).
Although some processes can be modelled by either stochastic compu-
tation or differential equations alone, many require a combination of
both methods. But some biochemical processes take place within a 
millisecond whereas others can take hours or days. Additionally, 
biological processes often involve the interaction of different types of
process, such as biochemical networks coupled to protein transport,
chromosome dynamics, cell migration or morphological changes in 
tissues. Although biochemical networks may be reasonably modelled
using differential equations and stochastic simulation, many cell 
biological phenomena require calculation of structural dynamics,
deformation of elastic bodies, spring-mass models and other physical
processes.

Nevertheless, development of precision models and their 
applications to ADME/Tox models are expected to revolutionize the
process of drug discovery by providing a capability for multiple-
target identification and high-throughput virtual screening of 
compounds. Furthermore, target identification using cellular 
models may provide desirable structures for candidate compounds
by applying multiple constraints to parallel virtual screening54, 
rationalizing drug discovery into a more systematic process (Fig. 1).

Systems therapy
Surpassing its scope for efficient improvements in the current 
paradigm of drug discovery and treatment, the introduction of a 

system-oriented view may drastically change the way treatments are
conducted. Two somewhat speculative scenarios illustrate these
opportunities.

Consider a feedback compensation circuit involving a drug target
protein. Changes in the concentration of the protein resulting from
drug administration may be neutralized by feedback control. High
dosages of drugs will need to be administered to overcome this com-
pensation mechanism, but this could produce serious side effects.
Alternatively, small dosages of drugs could mitigate the feedback
mechanism, so that the effect on the target protein will not be 
neutralized. Considering the p53 system, if there is abnormal overex-
pression of MDM2 (a protein that regulates p53), simply increasing
p53 transcription may not restore the system to normal, as the exces-
sive MDM2 protein will quickly ubiquitinate p53, targeting it for
destruction. Additionally, p53 itself transactivates MDM2. 
MDM2 activity must be suspended or reduced to a normal level, at
least temporarily, to make p53 stimulation effective in inducing 
cell-cycle arrest or apoptosis. The highly effective administration of
multiple drug regimes can be accomplished only with a system-level
analysis of the dynamics of gene regulatory circuits.

A far more futuristic approach proposes the introduction of 
functional genetic circuits to control cellular dynamics in vivo (see
review in this issue by Hasty and colleagues, pages 224–230). Already,
a set of basic functional circuits, such as oscillators and toggle 
switches, has been constructed and its viability confirmed in E. coli
(refs 69–71; and see review by Hasty and colleagues). Computer 
simulation and comprehensive analysis will be needed to ensure that
such circuits function as intended and do not result in significant
side-effects. In the future, perhaps a genetic circuit can be devised to
sense the level of p53 protein when DNA is damaged and switch on
circuits to further increase transcription of p53.

The application of systems biology to medical practice is the
future of medicine. Its realization will see drug discovery and the
design of multiple drug therapies and therapeutic gene circuits being
pursued just as occurs now with modern, complex engineering prod-
ucts — through iterative cycles of hypothesis and simulation-driven
processes (Fig. 1). Although the road ahead is long and winding, it
leads to a future where biology and medicine are transformed into
precision engineering. ■■
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